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II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany

Received: 31 August 2005 /
Published online: 14 February 2006 – c© Springer-Verlag / Società Italiana di Fisica 2005

Abstract. In gauge theories parallel transporters (PTs) U(C) along paths C play an important role.
Traditionally they are unitary or pseudoorthogonal maps between vector spaces. We propose to abandon
unitarity of parallel transporters and with it the a priori assumption of metricity in general relativity. A
∗-operation on parallel transporters serves as a substitute for it, and this ∗-operation is proven to be unique
on group theoretical grounds. The vierbein and the spin connection appear as distinguishable parts of a
single de Sitter gauge field with field strength F . The action takes the form 3

16πGΛ

∫
tr(F ∧ F iγ5) and

both the Einstein field equations with arbitrarily small but nonvanishing cosmological constant Λ and the
condition of vanishing torsion are obtained from it. The equation of motion for classical massive bodies
turns out to be de Sitter covariant.

1 Introduction

General relativity and the gauge theories governing the dy-
namics of elementary particles obey very much the same
basic principles, yet they are different both in their vari-
ables and in their action. More precisely, apart from the
vector potential (=spin connection) a vierbein field appears
in general relativity which has no analogue in Yang-Mills
theories, and the Einstein-Hilbert action is linear in the
curvature, while the Yang-Mills action is quadratic in the
field strength.

The Kaluza Klein principle addresses this issue by con-
structing gauge fields from metric tensors through dimen-
sional reduction. In this approach, the properties of pseudo-
Riemannian space time manifolds are assumed basic. We
wish to avoid such assumptions a priori beyond the fun-
damental locality properties of gauge theories.

General relativity and gauge theories demonstrate that
strong restrictions flow from the requirement that funda-
mental equations must be meaningful given the assumed
a priori structure. In general relativity, the assumed a pri-
ori structure includes neither preferred coordinate systems
nor the possibility of comparing directions in different fi-
bres TxM of tangent space. This suggests the strategy
of lessening what is assumed as a priori structure, rather
than adding to it [1]. In this paper we propose to abandon
the a priori assumption of metricity in general relativity,
substituting for it the existence of a ∗-operation on paral-
lel transporters. We prove that a nontrivial ∗-operation is
unique if the holonomy group is a de Sitter group. The les-
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son is that one can start from a single de Sitter gauge field
Bµ(x). The ∗-operation determines a split of Bµ(x) into
a spin connection Aµ(x) and a vierbein. Aµ(x) furnishes
a metric connection with metric given by the vierbein.

In all gauge theories, including general relativity, par-
allel transporters (PTs)

U(C) : Vx → Vy (1.1)

along paths C between points x, y of the space time man-
ifold M play a basic role. Traditionally, one demands
that parallel transport forth and back yields the iden-
tity, and that the fibres Vx come equipped with a bi-
linear or sesquilinear form 〈 , 〉x which is preserved
by parallel transport. In general relativity this is the
assumption of metricity. Defining the adjoint U(C)∗ by
〈U(C)∗v, w〉x = 〈v,U(C)w〉y, the stated demands read

U(−C) = U(C)−1 = U(C)∗ (1.2)

where −C is pathC traversed in the opposite direction. We
refer to the second equality as unitarity of parallel trans-
porters.

We propose to abandon the requirement of their uni-
tarity and to retain only the existence of a ∗-operation
such that

U(C)∗ : Vy → Vx (1.3)

is defined as a linear map with the properties

(U(C2)U(C1))∗ = U(C1)∗U(C2)∗

U(∅)∗ = U(∅) = id .
(1.4)

It was shown in earlier papers [2–4] that this generaliza-
tion leads to a geometric interpretation of Higgs fields. They
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can appear as parts of generalized parallel transporters in
extra directions in models in 5 (or more) dimensions in a
novel way such that exponential mass hierarchies appear
when the local gauge symmetry is spontaneously broken
by a Higgs mechanism.

Assuming invertibility of PTs, a holonomy group H
can be defined which inherits the ∗-operation which in
turn defines an involutive automorphism θ(g) = g∗−1 of
H. Conversely the involutive automorphism θ suffices to fix
the ∗-operation on PTs modulo gauge transformations in
H. Involutive automorphisms θ and θ′ which are conjugate
in H (viz. θ′(g) = g1θ(g)g−1

1 for some g1 ∈ H and all
g ∈ H) are not essentially different. They are related by
gauge transformations in H.

Assuming the holonomy group is a Lie group (or dense
in a Lie group) H, its conjugacy classes of involutive au-
tomorphisms can be classified. There are few possibilities.
Moreover, there is a distinguished subgroup G consisting
of elements u ∈ H obeying u∗ = u−1.

For general relativity, the holonomy group H is pos-
tulated to be a de Sitter group SO(1, 4) or SO(2, 3) (or
rather their simply connected covering groups). The sec-
ond possibilitySO(2, 3) is distinguished by admitting chiral
fermions. But SO(1, 4) is favored by the experimental fact
that the cosmological constant is positive. In both cases, a
nontrivial ∗-operation leads to G = SO(1, 3), assuming G
is noncompact1. This is the traditional gauge group of gen-
eral relativity according to Utiyama [6]. The ∗-operation
is proven to be unique in this case, modulo gauge transfor-
mations. Generally speaking, there is de Sitter covariance,
but general gauge transformations in H transform the ∗-
operation on parallel transporters. Once the ∗-operation
is fixed, only G survives as a local symmetry.

In this paper we abandon the assumption of metricity,
but parallel transporters remain invertible. This is implied
by the assumed existence of vector potentials which we
retain for now. The consideration of noninvertible parallel
transporters is outside the scope of this paper, although
they could be physically interesting for gauge theories in
space time with defects.

The ∗-operation identifies vierbein and spin connection
as parts of a single de Sitter vector potential. We propose an
action for this vector potential which has a (curvature)2-
form. Its variation leads to the Einstein field equations
with an arbitrarily small but nonvanishing cosmological
constant. It is intrinsically positive if H = SO(1, 4).

The paper is organized as follows. In Sect. 2 we present
the framework of generalized gauge theories, proving the
above mentioned classification and uniqueness results for
∗-operations. We discuss in Sect. 3 the generalized parallel
transport of Dirac and Weyl spinors, respectively. Vierbein
and spin connection become identifyable pieces of a single
de Sitter vector potential. In Sect. 4 we show that there
is a canonical way of constructing a metric and a metric
connection (with unitary parallel transporters U(C)).

1 A compact G would lead to Riemannian rather than pseudo-
Riemannian geometry and is incompatible with the assumption
of a causal structure.

In Sect. 5 we propose an action which takes the
(curvature)2 form and derive equations of motion for it.
One may adjoin the involutive automorphism as a group
element Θ to H, it is represented by Θ = −iγ5 in the
Dirac spinor representation. The proposed action reads
S = 1

g2

∫
tr(F ∧ F ∗Θ) = − 1

g2

∫
tr(F ∧ FΘ) where F is

the de Sitter field strength in Dirac spinor representation.
Variation leads to Einstein-Palatini field equations with
gravitational constant G and cosmological constant Λ �= 0
when one identifies 1

g2 = 3
16πGΛ .

The field equations can be written in a compact form
as follows. Denote the de Sitter parallel transporter by
T . Thanks to the possibility of substituting T (C)∗−1 =
Θ(T (C)) for T (C), there are actually two different2 exte-
rior covariant derivatives, denoted d∇ and d∗

∇, acting on
endomorphism valued forms such as F . They are conjugate
under Θ in the sense that

d∇(FΘ) = (d∗
∇F )Θ . (1.5)

We have d∇F = 0 as a Bianchi identity, whereas variation
of S leads to the field equations

d∗
∇(F − F ∗) = 0 , (1.6)

or, equivalently, d∇ (FΘ − F ∗Θ) = 0.
It will be shown in Sect. 5 that our action differs from

the Einstein-Palatini action by a topological term. One may
add a further topological term ∝

∫
tr(F ∧F ) to the action.

In any case, the action is polynomial. This is not a surprise.
Similar actions have been considered in the literature before
by MacDowell and Mansouri [5], and Smolin [7]. Smolin and
Starodubtsev [8] also considered what happens when one
substitutes a dynamical field for Θ. Freidel and Starodubt-
sev [9] argued that general relativity with a cosmological
constant becomes renormalizable when one treats it as a
perturbation of a topological field theory whose partition
function is to be evaluated exactly.

Finally we show in Sect. 6 that classical massive bodies
can be treated within the de Sitter theory as well.

Attempts to regard vierbeins as gauge fields have been
made before [5]. However, it was said that “there has always
been something contrived about attempts to interpret gen-
eral relativity as a gauge theory in that narrow sense” [10].
We hope that the present approach is more convincing.

2 Generalized parallel transport

2.1 Holonomy group

Let us consider a gauge theory with possibly nonunitary
parallel transporters T (C) along paths C.

There are two stages to the generalization

i.) The parallel transporters and their adjoints are invert-
ible, but not necessarily unitary.

ii.) The inverses T (C)−1 may not exist at all.

2 There are also two field strengths, but they are related as
F and −F ∗
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Assuming invertibility, the fibres Vx must have constant di-
mension.

Definition 1 (Generalized connection) Given a vector
bundle over a differentiable manifold M with fibres Vx at
x ∈ M, an invertible generalized connection T consists
of an assignment of invertible maps T (C) : Vx → Vy to
every piecewise smooth path C from x to y such that the
composition rules

T (C2 ◦ C1) = T (C2)T (C1) , T (∅) = id (2.1)

hold, together with a ∗-operation which takes T (C) to an
invertible map T (C)∗ : Vy → Vx, and T (C)∗ to T (C),
such that

(T (C2)T (C1))∗ = T (C1)∗T (C2)∗ , T (∅)∗ = T (∅) = id .
(2.2)

The generalized connection is differentiable if there exists
for every x̂ a moving frame eα(x) in a neighborhood N
of x̂ which furnishes a basis in Vx for every x ∈ N and
such that the following is true. For paths C : x → y in
Nparameterized by τ ∈ [0, τe], define the parallel transport
matrices T (C) by

T (C)ea(x) = eb(y)T (C)b
a . (2.3)

Let Ct be the piece of the path C from C(0) to C(t), t < τe.
Then T (Ct)b

a is differentiable with respect to t, for all
smooth paths C and all τ .

Given a differentiable connection and the moving frame,
a vector potential Bµ(x) is defined,

Y µBµ(z) = − d

dt
T (Ct) , (2.4)

where z = C(t) and Y is the tangent vector to C at z.

A holonomy group may be defined as follows.

Definition 2 (Holonomy group) Refer to parallel trans-
portersT (Ci), their adjointsT (Ci)∗ and inversesT (Ci)−1 ,
T (Ci)∗−1 as generalized parallel transporters (gPTs). They
may be composed to PTs around closed loops C = Cn ◦ . . .◦
C1. The totality of all such PTs along loops C from x to x
form a group Hx. The isomorphism class H of Hx will be
called the holonomy group for now.

If C ′ is a path from x to y and g ∈ Hx then
T (C ′)gT (C ′)−1 ∈ Hy, and this defines a homomorphism
from Hx to Hy. The inverse homomorphism also exists.
Therefore Hx and Hy are isomorphic to a group H and H
does not depend on the choice of x. Later we admit closure
in a suitable topology so that H becomes a Lie group.

A ∗-operation on PTs defines an involutive automor-
phism θ of the holonomy group,

θ(g) = g∗−1 for g ∈ Hx . (2.5)

Involutive means θ2 = id.
With a holonomy group at hand, the structure of the

theory remains similar to conventional gauge theorieswhich
can be handled with the method of principal fibre bundles.

In particular, we may restrict attention to moving frames
which are obtained by parallel transport of a basis at x̂
along some paths. Then the parallel transport matrices
take their values in a group of matrices which is a matrix
representation ofH. Therefore we may regardH as a group
of matrices and T (C) ∈ H. This will be assumed from
now on.

When invertibility is given up, the situation becomes
much more complicated. For instance, space time M may
decompose into domains Mi separated by boundaries, such
that the parallel transporters along paths within domains
remain invertible, defining holonomy groups Hi, but the
PT across boundaries are not invertible so that gPTs along
arbitrary loops C : x �→ x define semigroups Si ⊃ Hi for
x ∈ Mi. Instead of a single holonomy group we now have
collections of holonomy semigroupsSi ⊃ Hi and PTs across
boundaries form intertwiners between these. A comprehen-
sive study of such possibilities is beyond the scope of this
paper, although such theories may be physically interesting
to describe physics on space time with defects.

In this paper we restrict attention to the situation where
all parallel transporters remain invertible.

2.2 Involutive automorphisms and polar decomposition
of parallel transporters

By definition, an active gauge transformation in H is de-
fined by a choice of gz ∈ Hz for all z, and PTs T (C) along
paths C from x to y transform into g−1

y T (C)gx. Special-
izing to y = x, the group Hx gets transformed into itself.
Suppose the holonomy group is a Lie group or dense in a
Lie group H in a suitable topology such that group mul-
tiplication and adjunction are continuous. Henceforth H
will be called the holonomy group. Then H inherits the
involutive automorphism θ defined by (2.5) and θ passes
to an involutive automorphism, also denoted by θ, of the
(real) Lie algebra h of H.

We will see below that any involutive automorphism of
H suffices to define the ∗-operation on PTs modulo active
gauge transformations in H. Involutive automorphisms θ
of H are regarded as inequivalent if they are not conjugate
within H. There are few possibilities of inequivalent invo-
lutive automorphisms of H and they can be classified by
pairs of real forms of the complexification of h as follows.

Theorem 1 (Involutive automorphisms) Let H be a
Lie group with involutive automorphism θ which passes to
the Lie algebra h of H. Let G be the Lie subgroup of H
whose elements obey θ(g) = g. Regard h as a real form of
its complexification hC.

1. There exists another real form hc of hC such that the
Lie algebra of G equals g = h ∩ hc.

2. There exists a decomposition of h as a direct sum

h = g ⊕ p (2.6)

such that

[g, g] ⊂ g , [p, g] ⊂ p , [p, p] ⊂ g (2.7)
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and the involutive automorphism θ acts according to

θ(X) = X for X ∈ g , θ(X) = −X for X ∈ p , (2.8)

and
hc = g ⊕ ip , (2.9)

where i =
√

−1.

Proof Given θ, the decomposition (2.6) is defined by (2.8)
and fulfills (2.7). Defining hc by (2.9), it is evidently a real
form of hC and g = h ∩ hc. Given a decomposition (2.6)
with properties (2.7), θ as defined in (2.8) is an involutive
automorphism. ��

The real forms of simple complex Lie algebras are classified
in text books [11]. The real forms of semisimple or reductive
Lie algebras (i.e. semisimple except for abelian factors) can
be deduced from them.

Our main interest in the present paper will be in the fol-
lowing

Example 1 hC = so(5,C).
We state the results for the pairs of groups H ⊃ G,

G �= H modulo passage to covering groups.
a) G compact: SO(1, 4) ⊃ SO(4) and

SO(2, 3) ⊃ S(O(2) ×O(3)).
b) G noncompact: SO(1, 4) ⊃ SO(1, 3) and

SO(2, 3) ⊃ SO(1, 3).

We see that the involutive automorphism is unique for both
choices SO(1, 4) and SO(2, 3) of H if it is demanded that
G is noncompact, and G = SO(1, 3) in both cases.

If G is the maximal compact subgroup of H then hc is
the compact real form of hC and θ is known as the Cartan
involution of h. The Cartan involution lifts to an involution
of H and the split (2.6) leads to a global decomposition,
i.e. the elements h of H can be written as

h = g exp(X) , g ∈ G, X ∈ p . (2.10)

The Cartan decomposition generalizes the polar decompo-
sition of matrices.

In [4] it is shown that the parametrization (2.10) of
parallel transporters in extra directions yields Higgs fields
X which take their values in the tangent space p to the
coset space H/G. This coset space H/G is a symmetric
space in case G is the maximal compact subgroup of H.
p is isomorphic to the noncompact part of the Lie algebra
of H.

Here we are interested to accomodate Vierbein fields
in an analogous way. Then one has to admit maximal non-
compact subgroups G of H as gauge groups in order to get
the Lorentz group as unitary gauge group.

Even in this case one can show that a decomposition on
the group level corresponding to (2.6) exists, at least for
elements nearby the identity of H. We comment on global
decompositions in the outlook.

Theorem 2 (Polar decomposition) . Let T ∈ N ⊂ H,
where N is a sufficiently small neighborhood of the identity
inH. Suppose that there is an involutive antiautomorphism

g �→ g∗ of H, which passes to an involutive antiautomor-
phism of the Lie algebra of H.

Then T can be uniquely represented in the form

T = UP , (2.11)

where U and P satisfy

U∗ = U−1 (2.12)

P∗ = P , (2.13)

i.e. the first factor U is unitary, the second factor P self-
adjoint, and both are close to the identity.

Proof [12] Let N be a sufficiently small neighborhood of
the identity in H such that for T ∈ N we have a unique
representation T ∗T = eX , X ∈ h. Then also (T ∗T )1/2 =
eX/2 and within N there are uniquely determined elements

P := (T ∗T )1/2 (2.14)

U := T (T ∗T )−1/2 (2.15)

with T = UP. Clearly, one finds P∗ = P and U∗ = U−1.
��

2.3 ∗-operation on parallel transporters

An involutive automorphism θ of the holonomy group H
suffices to specify a ∗-operation on the PTs. More precisely,
we have

Theorem 3 Given parallel transporters T (C) in a vec-
tor bundle V with fibres Vx

∼= V = Vx̂, suppose that the
associated holonomy group Hx̂

∼= H is equipped with an
involutive automorphism θ. Then the induced ∗-operation
T (C)∗ = θ(T (C))−1 on PTs along closed paths from x̂ to x̂
extends to a ∗-operation on arbitrary PTs. The ∗-operation
is determined by the conjugacy class of θ, up to active gauge
transformations in H.

Proof First we prove the existence. Given Vx, Vy we let
E(Vx, Vy) := {T (C)|C : x �→ y} denote the set of all
parallel transporters along paths C from x to y. Elements
of E(Vx, Vy) can be identified with elements of the holonomy
group Hx̂ in the following way. Given x choose a path Cx

from x to x̂. Let iyx be a map iyx : E(Vx, Vy) → Hx̂ defined
by iyx(T (C)) := T (Cy)T (C)T (Cx)−1. Note that iyx is a
functor from the category of all parallel transporters on
M to the holonomy group Hx̂, i.e. izyiyx = izx.

For T (C) ∈ E(Vx, Vy) we define T (C)∗ ∈ E(Vy, Vx) by

T (C)∗ := i−1
xy (θ(iyx(T (C))−1) . (2.16)

Due to the composition law of PTs and the properties of
θ and iyx, respectively, the ∗-operation satisfies
(T (C2)T (C1))∗ = T (C1)∗T (C2)∗ and T (C)∗∗ = T (C).

Next we show that the definition (2.16) does not depend
on the choice of path Cx up to an active gauge transfor-
mation. Let C ′

x be another path from x to x̂ and i′yx be
the associated map. Then we get after a short calculation

T (C)∗′
= S(x)T (C)

∗
S(y)−1 (2.17)
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where S(z) = T (C ′
z)

−1T (Cz) ∈ Hz
∼= H and T (C) =

S(y)−1T (C)S(x). ��

Given the PTs, the definition of the associated vector po-
tential depends on a choice of moving frame. Introduc-
ing a moving frame which furnishes bases in Vx, PTs get
converted to matrices via T (C)ea(x) = eb(y)T b

a(C). As-
suming differentiability of the connection, the vector po-
tential Bµ(x) is defined by considering infintesimal paths
b : x �→ x+ δ x

T (b) = 1 − Bµ(x)δxµ . (2.18)

Since T (C) ∈ H,Bµ(x) is in its Lie algebra h. On the Lie
algebra level one has X∗ = −θ(X). Therefore

Bµ(x) = Aµ(x) + Eµ(x) (2.19)

with

Aµ(x) = −Aµ(x)∗ ∈ g and Eµ(x) = Eµ(x)∗ ∈ p .
(2.20)

As a result the ∗-operation induces a split of the vector
potential. We shall later use this to identify a spinorial
form of the vierbein and the spin connection as parts of a
single de Sitter vector potential. Referring to Example 1 we
see that Aµ(x) ∈ so(1, 3) if H ∼= SO(1, 4) or SO(2, 3) and
G is noncompact. We shall examine the transformation
properties of the pieces under gauge transformations in
Theorem 6 below. The ∗-operation acts on infinitesimal
PT as follows

T (b)∗ := 1 − (Eµ(x) − Aµ(x))δxµ . (2.21)

Consequently we find

T (b)∗T (b) = 1 − 2Eµ(x)δxµ �= 1 , (2.22)

i.e. T (C)∗ �= T (C)−1 for nonvanishing Eµ(x).

Theorem 4 Given the ∗-operation on parallel transporters
T (C), these admit a unique decomposition

T (C) = U(C)P(C) for C : x → y (2.23)

into a unitary factor U(C) = U(C)∗−1 : Vx → Vy which
obeys the composition law

U(C2 ◦ C1) = U(C2)U(C1) , U(∅) = id (2.24)

and Hx � P(C) : Vx → Vx such that P(b) = P(b)∗ for
infinitesimal paths b. Let

hx = gx + px (2.25)

be the split of the Lie algebra hx ofHx into ∗-odd and ∗-even
parts. This defines px as a real subspace of End(Vx) and
the unitary factor can serve to define parallel transport of
elements of px via

px � X → U(C)XU(C)−1 ∈ py (2.26)

for arbitrary paths C from x to y.

Proof Consider the corresponding parallel transport ma-
trices U(C) and P (C). For infinitesimal paths b it follows
from P(b) = P(b)∗ and (2.18)–(2.20) that

P (b) = 1 − Eµ(x)δxµ (2.27)

U(b) = 1 − Aµ(x)δxµ , (2.28)

respectively. Existence and uniqueness of the decomposi-
tion for finite paths C follows from the composition laws
by composing C from infinitesimal paths. The explicit for-
mulae for U(C) and P (C) are given in Theorem 5 below.

Finally we prove (2.26). It suffices to consider infinitesi-
mal pathsC from x to x+δx. Passing to matrix description
we have U(C) = 1−Aµ(x)δxµ with Aµ(x) ∈ gx. IfX ∈ px

then

U(C)XU(C)−1 = X + [X,Aµ(x)]δxµ (2.29)

and this is ∗-even. ��

Theorem 5 Given the path C parametrized by τ ∈ [τf , τi],
write U [τ2, τ1] for the unitary parallel transporters along
the piece of C from C(τ1) to C(τ2). Define the covariant
line integral∫

C

Eµ(x)Dxµ :=
∫ τf

τi

U [τ, τi]−1Eµ(x(τ))U [τ, τi]dτ .

(2.30)
Then

U(C) = T exp
(

−
∫

C

Aµ(x)dxµ

)
, (2.31)

where T is ordering with respect to the parameter τand

P (C) = T exp
(

−
∫

C

Eµ(x)Dxµ

)
. (2.32)

Proof The path C can be decomposed into infinitesimal
pieces C = bN ◦ . . . b1, N → ∞. Inserting the polar decom-
position for the infinitesimal pieces, one obtains the formula

T (C) = U(bN )P (bN ) . . .P (b2)U(b1)P (b1) (2.33)

in the limit N → ∞. The P -factors can be pushed to the
right, using PU = UP ′, where P ′ := U−1PU . As a result
one arrives at formula (2.32). ��

Active gauge transformations in H induce linear trans-
formations of moving frames, described by matrices S(x),
according to

eα(x) → e′
α(x) = gxeα(x) = eβ(x)S(x)β

α , gx ∈ Hx .
(2.34)

Under conditions laid down in Sect. 2.1 S(x) ∈ H. Gen-
eral parallel transport matrices along paths C from x to y
transform according to

T (C) �→ S(y)−1T (C)S(x) . (2.35)

We restrict attention to gauge transformations which are
unitary in the sense that g∗

x = g−1
x . We call them uni-

tary gauge transformations for short. The corresponding
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matrices S(x) form subgroups Gx isomorphic to G. For
suitably restricted moving frames, the matrix group Gx is
independent of x. By abuse of notation, we write S(x) ∈ G
for unitary gauge transformations. The transformation be-
haviour of the pieces of the vector potential is given by the
next theorem.

Theorem 6 (Tranformation laws) Under a unitary
gauge transformation S(x) ∈ G the pieces of the vector
potential Bµ(x) transform according to

Eµ(x) → E′
µ(x) = S−1(x)Eµ(x)S(x) , (2.36)

Aµ(x) → A′
µ(x) = S−1(x)Aµ(x)S(x) +

+S(x)−1∂µS(x) . (2.37)

Proof Combining formula (2.35) and (2.27), (2.28), we ar-
rive at (2.36). ��

We note that Eµ(x), which will later be identified with the
spinorial form of the vierbein, transforms homogeneously,
as it must be.

2.4 ∗-representation of the holonomy group

Starting from a principal fibre bundle one has to choose a
representation (τ, V ) of the holonomy group H to obtain
an associated vector bundle. Conventionally, the represen-
tation spaces V are equipped with a scalar product 〈 , 〉
such that the adjoint map with respect to 〈 , 〉 is the
inverse, i.e.

〈v, τ(g)w〉 = 〈τ(g)−1v, w〉 . (2.38)

Consequently, one deals with unitary (or pseudo-unitary)
representations of the holonomy group.

In the framework of generalized parallel transporters it
is natural to admit also nonunitary representations of H
which do not satisfy (2.38). More precisely we are inter-
ested in situations where the algebraic ∗-operation is at the
same time the adjoint map between vector spaces with a
bilinear or sesquilinear form, respectively. This motivates
the following definition

Definition 3 Let H be a group which is equipped with
an involutive automorphism θ and let g∗ := θ(g)−1. A
∗-representation of H is a representation of H given by
operators τ(g) : V → V where V is a finite-dimensional
real or complex vector space which is equipped with a non-
degenerate bilinear or sesquilinear form 〈 , 〉 such that

〈v, τ(g)w〉 = 〈τ(g∗)v, w〉 . (2.39)

Note that unitary representations are the special case asso-
ciated with positive definite forms 〈 , 〉 and the trivial
automorphism θ(g) = g.

Theorem 7 Suppose that the manifold M is connected.
Given parallel transporters T (C) in a vector bundle V over
M with fibres Vx

∼= V = Vx̂, suppose that the induced repre-
sentation of the holonomy group H on V can be made into

a ∗-representation by a choice of a bilinear or sesquilinear
form, denoted 〈, 〉x̂, on V .

Then the fibres Vx can be equipped with bilinear or
sesquilinear forms 〈, 〉x, respectively, such that

〈v, T (C)w〉y = 〈T (C)∗v, w〉x (2.40)

for all paths C : x → y between arbitrary sites x, y ∈ M
and all v ∈ Vy, w ∈ Vx.

Corollary 1 Let U(C) be the unitary factor in the decom-
position of T (C) according to Theorem 4. Under the same
assumptions as in Theorem 7 we have

〈U(C)v,U(C)w〉y = 〈v, w〉x (2.41)

for all x, y ∈ M, v, w ∈ Vx and all paths C : x → y.

Proof Given x, choose a pathC : x → x̂. Define the bilinear
or sesquilinear form 〈 , 〉x in Vx by

〈v, w〉x := 〈U(C)v,U(C)w〉x̂ , (2.42)

where U(C) are unitary parallel transporters introduced
in Sect. 2. First we show that the scalar product does not
depend on the choice of the path C. To see this let C ′ be
another path from x to x̂. Then L = C ◦ (−C ′) : x̂ → x̂ is
a closed path, therefore U(L) is an element of the unitary
gauge group with U(L)∗ = U(L)−1. As U(−C)U(C) = id
it follows that U(C) = U(C)U(−C ′)U(C ′) = U(L)U(C ′).
Consequently,

〈U(C)v,U(C)w〉x̂ = 〈U(L)U(C ′)v,U(L)U(C ′)w〉x̂

= 〈U(C ′)v,U(C ′)w〉x̂ (2.43)

due to the ∗-property of the representation of the holonomy
group and the unitarity of the parallel transporters. This
proves independence of the choice of C. To prove (2.40)
we use the identification of parallel transporters T (C) for
arbitrary paths C with elements of the holonomy group
H via the map iyx and the definition (2.42). Then the
statement (2.40) follows from the assumption that we deal
with a ∗-representation of H as a short calculation shows

〈v, T (C)w〉y = 〈U(Cy)v,U(Cy)T (C)w〉x̂

= 〈U(Cy)v, iyx(T (C))U(Cx)w〉x̂

= 〈U(Cx)i−1
xy (θ(iyx(T (C)))−1)v,U(Cx)w〉x̂

= 〈T (C)∗, w〉x.
(2.44)

This completes the proof of Theorem 7.
The corollary follows from (2.40) and unitarity U(C)∗ =

U(C)−1 of the parallel transporters associated with the
unitary gauge group G. ��

In general relativity we are mainly interested in real vec-
tor spaces with an indefinite bilinear form. We shall use
Theorem 7 with the following
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Lemma 1 Suppose the real vector space V carries a rep-
resentation of the holonomy group H with involutive auto-
morphism g �→ θ(g) = g∗−1. Let V ′ be the dual space. Then
V ⊗V ′ can be equipped with a bilinear form to make it into
a ∗-representation space.

Proof Define the bilinear form on V ⊗ V ′ by

〈v ⊗ ξ, w ⊗ χ〉 := ξ(w)χ(v) v, w ∈ V, ξ, χ ∈ V ′ .
(2.45)

The representation τ⊗(g) : V ⊗ V ′ → V ⊗ V ′ is given by

(τ⊗(g))(v ⊗ ξ) := τ(g)v ⊗ τ ′(g)ξ , (2.46)

where τ ′ denotes the representation carried by the dual
space V ′, which is defined as

(τ ′(g)ξ)(v) := ξ(τ(g∗)v) , v ∈ V, ξ ∈ V ′ . (2.47)

A simple calculation yields

〈v ⊗ ξ, (τ⊗(g))(w ⊗ χ)〉 = 〈(τ⊗(g∗)(v ⊗ ξ), w ⊗ χ〉 . ��

3 Nonunitary parallel transport of Dirac spinors

Let us now apply our general formalism developed so far
to parallel transport of Dirac spinors. In the traditional
approach to general relativity, one considers the parallel
transport U(C) : TxM → TyM of tangent vectors. It sat-
isfies the unitarity condition (1.2), and there is a scalar
product 〈 , 〉x in TxM, which is determined by the
metric tensor gµν(x) and which is invariant under paral-
lel transport

〈U(C)∗v, w〉x = 〈v,U(C)w〉y , (3.1)

for all v ∈ TyM, w ∈ TxM.
When a pseudo-orthonormal moving frame (eα(x)) is

chosen, the corresponding vector potential
Aµ(x) = (Aα

βµ(x)) is in the Lie algebra so(1, 3) of the
Lorentz group. Indices α, β are raised and lowered with the
metric tensor ηαβ = diag(+1,−1,−1,−1) in Minkowski
space. Upon introducing Dirac γ-matrices which obey stan-
dard anticommutation relations {γα,γβ} = 2ηαβ , one de-
fines

Aµ(x) :=
1
8
Aαβ

µ(x)[γα,γβ ] . (3.2)

It can be used to define parallel transporters U(C) for
Dirac spinors Ψ(x) ∈ Vx

∼= C
4. There is a scalar product

〈Ψ,Φ〉x = Ψ †(x)βΦ(x) with β = γ0 in popular represen-
tations of the Dirac matrices, which is invariant under the
parallel transport, so that (3.1) holds again. Generically,
the gauge group is the two fold cover Spin(1, 3) of the
Lorentz group.

Conversely, if the parallel transport of Dirac spinors
is given, complex 4-vectors v which can be made from
Dirac spinors can also be parallel transported. It turns out
that there exists a subspace of real 4-vector fields which
is preserved by parallel transport. To obtain the parallel

transport of tangent vectors∂µ toM, theyneed tobe identi-
fied with real 4-vectors v = (vα). This requires the vierbein
eα
µ(x). Its square gives the metric, gµν(x) = eα

µ(x)eβ
ν (x)ηαβ .

In this way, general relativity appears as a gauge theory
with gauge group G = SL(2,C) [6] and an additional field
eα
µ(x).

We propose to incorporate the vierbein into a vector
potential associated with a gPT

Bµ(x) :=
1
2l
eα
µ(x)γα +

1
8
Aαβ

µ(x)[γα,γβ ] (3.3)

= : Eµ(x) + Aµ(x) . (3.4)

l has the dimension of a length and will be chosen con-
veniently later on. The corresponding holonomy group is
isomorphic to the two fold cover Spin(1, 4) of a de Sit-
ter group.

The two pieces of the vector potential may be distin-
guished by their transformation property under a suitable
involutive automorphism θ of the de Sitter algebra, viz

−θ(X) = βX†β−1 (3.5)

where X† is the matrix adjoint of X. Defining the ∗-
operation on the Lie algebra by X∗ = −θ(X), one ver-
ifies that

Eµ(x)∗ = +Eµ(x) , Aµ(x)∗ = −Aµ(x) . (3.6)

We note that the automorphism θ can be implemented
within the representation in the sense that that there exists
a matrix Θ such that

θ(X) = ΘXΘ−1 , viz Θ = −iγ5 . (3.7)

The automorphism θ of the Lie algebra passes to an involu-
tive automorphism of the group and may serve to define a
∗-operation on parallel transporters acting on Dirac spinors
in the manner described in Sect. 2.

Let us mention that there is an alternative to the de
Sitter group SO(1, 4). Actually, it is also possible to choose

Eµ(x) :=
1
2l
eα
µ(x)γαγ5 . (3.8)

This choice leads to the (anti)-de Sitter group with Lie
algebra so(2, 3). The Majorana condition on Dirac spinors
is invariant under anti- de Sitter parallel transport, while it
is not under de Sitter parallel transport. Later it will turn
out that Weyl fermions can only be accomodated with a
holonomy group H = Spin(2, 3). Let us remind ourselves
that the Majorana condition on Dirac spinors is defined as

ψC := Cψ̄t = Cβtψc.c. != ψ , (3.9)

where C denotes the charge conjugation matrix and c.c
means complex conjugation. Invariance under parallel
transport requires

(T (C)ψ)C = T (C)ψC . (3.10)
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3.1 Weyl spinors

Up to now we assumed that matter was described by Dirac
spinors. However, it is possible to define nonunitary parallel
transport also for Weyl spinors, assuming H = Spin(2, 3).
These parallel transporters will be real linear but not com-
plex linear. In the following we shall consider lefthanded
spinors ξ ∈ V ( 1

2 ,0) for definiteness sake.
Let C be the operator of complex conjugation, anddefine

the following real linear transformations of V ( 1
2 ,0)

ρα :=
1
l
σαεC (3.11)

ραβ := σασ̃β − σβσ̃α , (3.12)

where ε is the antisymmetric tensor in two dimensions and
σi are Pauli matrices, σ̃i = −σi and σ̃0 = σ0 = 1. They
are Lorentz covariant in the sense that

SραS−1 = ρβΛ
β

α(S) (3.13)

for S ∈ SL(2,C), and satisfy the same commutation rela-
tions as γα − iγ5 and [γα,γβ ], in particular

[ρα,ρβ ] = −l−2ραβ . (3.14)

Therefore they generate the Lie algebra so(2, 3). The vector
potential associated with the nonunitary parallel transport
of Weyl spinors is

Bµ(x) :=
1
2
eα
µρα +

1
8
Aαβ

µ(x)ραβ (3.15)

= : Eµ(x) + Aµ(x) . (3.16)

In place of (3.11), (3.12) one could define

ρα :=
1
l
iσαεC (3.17)

ραβ := σασ̃β − σβσ̃α . (3.18)

They satisfy the same commutation relations. Apparently,
it is not possible to accomodate the Lie algebra so(1, 4)
here. The ∗-operation is obtained by the involutive anti-
automorphism θ

X∗ = −θ(X) := ε−1Xtε (3.19)

for X ∈ so(2, 3). It can be used to identify the two pieces of
the vector potential θ(Eµ(x)) = −Eµ(x) , θ(Aµ(x)) =
+Aµ(x). The automorphism passes to an involutive auto-
morphism of the two fold cover of the anti-de Sitter group.
The elements of the unitary gauge group G = SL(2,C) are
characterized by

θ(g) = g−1 ⇔ g ∈ SL(2,C) . (3.20)

The polar decomposition of parallel transporters along
infinitesimal paths b is T (b) = U(b)P (b) with P (b) =
1 − Eµ(x)δxµ and U(b) = 1 − Aµ(x)δxµ, respectively.
So far, everything looks very similiar to the Dirac case.
But beware: Only the unitary parallel transporters are C-
linear. This fact requires some care in calculations. For
details of the “Weyl-formalism”, see the diploma thesis of
F. Neugebohrn [12].

4 Generalized metricity

We now wish to define parallel transport of tangent vectors
to M, and a metric on M such that the length of tangent
vectors is invariant under parallel transport. The idea is
simple. The metric comes from the vierbein part of the de
Sitter vector potential, and the parallel transport comes
fromtheunitary factor in the deSitter parallel transporters.
We must explain what means “comes from”, and show that
the announced properties hold.

With a view towards generalizations beyond general
relativity, we begin the discussion without assuming that
the holonomy group is de Sitter. Let us assume that the
parallel transport T (C) on some space of spinors Vx � ψ(x)
is defined. We write V ′

x for the space of linear maps

α : Vx → C , v → α(v) . (4.1)

Parallel transport of fibers Vx passes to parallel transport
of fibers V ′

x in a canonical way,

(T (C)α)(v) := α(T (C)∗v) (4.2)

for C : x → y, and therefore also to Vx ⊗ V ′
x. The same is

true for the unitary parallel transport defined in Theorem
4. The spaceEnd(Vx) of linear maps Vx → Vx is canonically
isomorphic to Vx ⊗ V ′

x because v ⊗ f defines a map u �→
vf(u). Referring to the last part of Theorem 4, we see that
the vierbein, which is ∗-even, maps elements t = tµ∂µ of
tangent space TxM into px ⊂ End(Vx),

tµEµ(x) ∈ px ⊂ Vx ⊗ V ′
x (4.3)

and its unitary parallel transport is defined as

tµEµ(x) �→ tµU(C)Eµ(x)U(C)−1 ∈ py . (4.4)

Combining Theorem 7 and Lemma 1, Vx⊗V ′
x gets equipped

with a nondegenerate bilinear form such that the ∗-property
(2.40) holds.Consider the unitary factorsU(C) in the gener-
alized polar decompositionof PTs. Corollary 1 asserts that

〈U(C)w,U(C)z〉y = 〈w, z〉x , (4.5)

where 〈 , 〉x denotes the bilinear form on Vx ⊗V ′
x. Since

tµEµ(x) ∈ px ⊂ Vx ⊗ V ′
x, the 1-form E(x) := Eµ(x)dxµ

defines a map

E(x) : TxM → px ⊂ Vx ⊗ V ′
x (4.6)

from the tangent space of M to a real subspace px of the
span of vectors v ∈ Vx ⊗ V ′

x. This defines a bilinear form
on TxM, i.e. a metric 〈∂µ, ∂ν〉x = gµν(x) via

gµν(x) = 〈E(∂µ),E(∂ν)〉x . (4.7)

If the range of the map obeys

E(x) [TxM] = px (4.8)

then E(x) identifies px with the tangent space TxM and
unitary parallel transport in the space of vectors v ∈ px

passes to a parallel transport of tangent vectors which is
metric preserving by (4.5).

It is of interest to study also the degenerate case

E(x) [TxM] =: Wx ⊂ Vx ⊗ V ′
x , Wx �= px . (4.9)

We shall return to this case in Sect. 7.
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4.1 Metricity in general relativity

In general relativity, the condition (4.8) is satisfied. Indeed,
the subspace px of the de Sitter Lie algebras so(1, 4) or
so(2, 3) is a 4-dimensional real vector space (spanned by
Dirac matrices γα or γαγ5, respectively), and the metric
is nondegenerate if the image of TxM under E(x) also has
real dimension 4.

The metric defined by (4.7) does not have the customary
dimension, though. Therefore we replace it by

gµν(x) = l2〈E(∂µ),E(∂ν)〉x , (4.10)

where l is the standard of length which was introduced in
Sect. 3 and which will be conveniently chosen later on. In
other words, the true vierbein is eµ(x) = lEµ(x).

In the case ofH = Spin(2, 3) and using the Weyl spinor
formalism of Sect. 3.1, the scalar product 〈 , 〉x in Vx ⊗
V ′

x
∼= End(Vx) is given by a trace and we have

E(x) =
1
2l
eα
µ(x)σαεCdxµ . (4.11)

Therefore we arrive at

tr(E(∂µ)E(∂ν)) =
1

4l2
tr(eα

µ(x)eβ
ν (x)σασ̃β) (4.12)

=
1

2l2
eα
µ(x)eβ

ν (x)ηαβ (4.13)

=
1

2l2
gµν(x) . (4.14)

As expected, we get the customary metric tensor of gen-
eral relativity.

In the case of Dirac spinors, the discussion proceeds in
the same way (using tr(γαγβ) = 4ηαβ).

5 Gravity Actions

Let us now turn to the formulation of an action for gravity
within the general framework developed so far. We shall
consider in the following section a generalized gauge the-
ory with holonomy group H = Spin(1, 4). We introduce
the matrix-valued de Sitter field strength 2-form which is
associated with the de Sitter vector potential B

F = dB + B ∧ B . (5.1)

Using the split (3.3) of the generalized vector potential
we find

F = F U + E ∧ E + T . (5.2)

Here F U = dA + A ∧ A is the Lorentz curvature and
T = d∇U E = dE + E ∧ A + A ∧ E is the torsion, d∇U

being the exterior covariant derivative associated with the
spin connection.

Under the ∗-operation the field strength F decomposes
in two different parts. The odd part of the field strength
is F − := 1

2 (F − F ∗) = F U + E ∧ E, whereas the even

part is the torsion tensor T = 1
2 (F + F ∗) . We propose

the following action for gravity

S =
1
g2

∫
tr(F ∧ F ∗Θ) = − 1

g2

∫
tr(F ∧ FΘ) (5.3)

where F is the de Sitter field strength in the Dirac spinor
representation and Θ = −iγ5 is the implementation of
the outer automorphism X �→ −X∗ of the de Sitter Lie
algebras in the Dirac representation so that

F ∗Θ = −ΘF . (5.4)

We choose to demand Θ2 = −1, where −1 is the nontrivial
element of the center of Spin(1, 4). As a result, Θ defines a
complex structure of the Lie algebra. T. Grimm [13] pointed
out a possible connectionwith recentwork ofHitchin [14,15]
where complex structure also plays a crucial role.

The equality of both expressions for S follows from the
cyclicity of the trace.

1
g2 is a dimensionless constant which will be identified

with 3
16πGΛ in a moment, where G is the Newton constant

and Λ the cosmological constant.
Note that the action involves a kind of supertrace,

Trω := tr(ωΘ) . (5.5)

Before deriving the field equations, let us establish that
the action (5.3) actually yields the Einstein-Palatini action
with cosmological constant plus a topological term. Insert-
ing the split (5.2) of the de Sitter field strength the terms
involving T , which is a linear combination of γ-matrices,
vanish because of properties of traces of products of γ-
matrices. We get

S =
i

g2

∫
tr(F U ∧F Uγ5)+

i

2g2l2

∫
tr(e∧e∧F Uγ5)+

+
i

16g2l4

∫
tr(e ∧ e ∧ e ∧ eγ5). (5.6)

The first term is topological because F U maps the two irre-
ducible 2-dimensional representation spaces for the Lorentz
group in themselves, and γ5 restricts to ±1 on these spaces.
The other two terms in (5.6) are a spinorial rewriting of
the Einstein-Palatini action with cosmological constant Λ
(see the Appendix)

SE.P. =
1

16πG

∫
d4xdet e(R+ 2Λ) (5.7)

if we identify

G :=
l2g2

16π
, Λ :=

3
l2
,

1
g2 =

3
16πGΛ

. (5.8)

Remarkably, we get a realistic value for the energy density
ρΛ = Λ

8πG if we identify the length l with the ultimate
infrared cutoff, namely the Hubble constant. In this case
g2 ∼ 10−120 is a tiny constant.
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In the de Sitter vector potential, the part E = 1
2l e

αγα

and A are independent. Variation of the Einstein Palatini
action with respect to E and A yields the Einstein field
equations, here with a cosmological constant Λ, E ∧F U +
F U ∧ E + 2E ∧ E ∧ E = 0 and vanishing of the torsion. A
more careful derivation of the field equations will be given
in a moment and confirms the result.

Let us comment on the uniqueness properties of this ac-
tion, given that we do not have a proper Hodge �-operator.
In the context of generalized gauge theory we have actually
two parallel transporters T (C) and T (C)∗−1 along a path
C. Correspondingly, there exist two covariant derivatives,
which we denote by d∇ and d∗

∇ respectively and which
are conjugate under Θ in the sense of (1.5), and two field
strengths. But the two field strengths are simply F and
−F ∗. Therefore the ambiguity of which field strength to
take is irrelevant in view of the equality (5.3). The only
other candidate for an FT squared action which is not
purely topological would be 1

g2

∫
tr(F ∧ F ∗). This would

not lead to the Einstein field equations, but instead to the
condition of vanishing torsion, as we shall see later on.

Regarding S as a function of the de Sitter vector po-
tential B its variation with respect to B yields

δBS = −
∫

tr(δF ∧ FΘ + F ∧ δFΘ) (5.9)

= −
∫

tr (d∇δB ∧ (FΘ + ΘF )) (5.10)

Let us pretend for amoment that δB is an arbitrary element
of the Clifford algebra generated by the Dirac matrices.
Actually it is not so, but we show below that it makes no
difference. Upon partial integration, the vanishing of δBS
yields the field equations

d∇(FΘ − F ∗Θ) = 0 , (5.11)

or, equivalently, d∗
∇(F − F ∗) = 0.

An obvious solution of (5.11) is

F = 0 . (5.12)

(5.12) does not yield a trivial solution, but instead one gets

F U = −E ∧ E (5.13)

T = 0 . (5.14)

Note that the solution of (5.13) describes a de Sitter uni-
verse with cosmological constant Λ.

Next we split d∇(FΘ−F ∗Θ) into linearly independent
pieces which must vanish separately. Inserting the above
expression for F − the field equation reads

0 = d∇U (E∧E)+E∧F U +F U ∧E+2E∧E∧E . (5.15)

We note that E ∧ F U + F U ∧ E + 2E ∧ E ∧ E involves
products of odd numbers of γ-matrices, and d∇U (E ∧ E)
involves even numbers. So they are linearly independent. As
a result we obtain the following two independent equations

E ∧ F U + F U ∧ E + 2E ∧ E ∧ E = 0 (5.16)

d∇U (E ∧ E) = 0 . (5.17)

(5.16) is just the spinorial formof theEinstein field equation
with a cosmological constant. (5.17) is well known from the
analysis of thePalatini variational principle as the condition
for vanishing torsion.

Notice that in the action (5.3) there is no reason to
assume invertibility of the vierbein. Also the field equations
make perfect sense without assuming an invertible vierbein.

Let us finally dispense with the presumption that δB
is an arbitrary element of the Clifford algebra. Actually,
it must be an element of the Lie algebra so(1, 4), hence of
the form

δB =
1
2
δEαγα +

1
8
δAαβ [γα,γβ ].

The only nonvanishing trace of a product of Dirac-matrices
multiplied with Θ = −iγ5 is −itrγαγβγγγδγ5 = 4εαβγδ.
From the stationarity of S under δB of the above form,
we may therefore only conclude that the contributions to
the right hand side (r.h.s.) of (5.15) must vanish which
are proportional to totally antisymmetric products of two
or three Dirac matrices. But a short calculation reveals
that all the terms on the r.h.s. of (5.15) are of this form.
Therefore (5.15) must hold as it stands.

There have been speculations about the existence of a
low energy phase in which gravity is described by general
relativity and a high energy phase which is governed by a
purely topological theory with vanishing vierbein. We have
argued in refs [3,4] that the emergence of nonunitary PTs
may result from a RG-flow. It is tempting to ask whether
there is a connection between the emergence of nonunitary
PTs and the transition from a topological phase to a low
energy phase governed by general relativity.

Turning to the conventional massless Dirac matter ac-
tion, one can show that it also may be rewritten in a form
which does not need an inverse vierbein. Writing DU :=
DU

µ dx
µ = (∂µ + Aµ)dxµ and E(x) := 1

2l e
α

µ(x)γαdx
µ

we have

SM =
∫
d4xdet(eα

µ)ψ̄eµ
αγαD

U
µψ ∝ l3

∫
ψ̄e∧e∧eΘ∧DUψ .

(5.18)
It is natural in the spirit of this paper to replace DU by
DT = d+ B in (5.18). This adds a tiny mass term

SM =
∫

d4xdet(eα
µ)ψ̄eµ

αγαD
T
µ ψ

∝ l3
∫
ψ̄e ∧ e ∧ eΘ ∧DT ψ

= l3
∫
ψ̄e ∧ e ∧ eΘ ∧DUψ+

+ l4
∫
ψ̄e ∧ e ∧ e ∧ eΘψ. (5.19)

Finally, let us consider the action

S =
∫

tr(F ∧ F ∗) . (5.20)
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Variation with respect to B results in

d∇F ∗ = 0 . (5.21)

Because of the Bianchi identity d∇F = 0, this is equivalent
to 0 = 1

2 d∇(F + F ∗) = d∇T = d∇U T + E ∧ T − T ∧ E.
This splits as before into

E ∧ T − T ∧ E = 0 (5.22)

d∇U T = 0 . (5.23)

The first equation is the same as d∇U (E ∧ E) = 0. We
conclude that the action (5.20) leads to the condition of
vanishing torsion, but not to the Einstein field equations. A
term proportional to it could be added to the action which
we proposed. Classically, all these actions yield the same
field equations. But quantum fluctuations would differ.

6 Classical equations of motion

Up to now our discussion was based on the parallel trans-
port of Dirac spinors. It turns out, somewhat surprisingly,
that also classical massive particles can be treated within
the de Sitter framework. Let us recall that in general rel-
ativity a classical point particle is described by its four-
vector uα(τ) := dxα(τ)

dτ , where (uα) are the components
with respect to an orthonormal basis. Denoting the Lorentz
covariant derivative by DU , the equation of motion is(

DU

dτ
u(τ)

)α

:=
d

dτ
uα +Aα

βµu
βuµ = 0 . (6.1)

Equivalently, the dynamics is determined by

(U(C)u(τ))α = u(τ + δτ)α . (6.2)

Within the de Sitter framework the same equation describes
the motion, one has just to replace U(C) by T (C)

(T (C)u(τ))α = u(τ + δτ)α . (6.3)

To see this, one has to define the de Sitter parallel transport
of four-vectors. We exploit the fact that the four-velocity
is a future-directed, timelike four-vector, i.e. u0 > 0 and
η(u, u) := ηαβu

αuβ > 0. We identify u with an equivalence
class of future-directed, lightlike five-vectors and define
their de Sitter parallel transport.

Let (vα) be the components of a future-directed, time-
like four-vector, i.e.

(vα) ∈ C+ := {(wα)|w0 > 0 and η(w,w) > 0}. (6.4)

Define

v4 := ||v||1,3 = (vαη
αβvβ)

1
2 and η44 = −1 . (6.5)

Now we can define a future-directed, lightlike five-vector
(vα, v4)

(vα, v4) ∈ C(1,4)
+ := {(wα, w4)|w0 > 0 ,

||(vα, v4)||1,4 := vαη
αβvβ + v4 η

44 v4 = 0}. (6.6)

Evidently, multiplication with a positive real number yields
again an element in C(1,4)

+ . The resulting equivalence classes
are elements (“rays”) of a real projective space

P
1,3 := {[v]|v ∈ C1,4

+ } , (6.7)

where
[v] := {w|w = λv, λ > 0} . (6.8)

u satisfies ||u||1,3 = 1. Every four-velocity determines
uniquely a ray. Since every ray contains a vector with u4 =
1, the converse is also true. Elements of SO(1, 4) act as
pseudorotations in R

5 and map lightlike vectors to lightlike
ones. The parallel transport of rays can be defined as

T (C)[v] := [T (C)v] . (6.9)

We define a vectorial (as opposed to spinorial) form of the
de Sitter vector potential by

Bαβ
µ(x) = Aαβ

µ(x) (6.10)

Bα4
µ(x) = l−1eα

µ(x) = −B4α
µ(x) . (6.11)

Now the parallel transport of five-vectors may be defined as

(T (b)v)a := va(x+ δx) +

−[∂µv(x)a +Ba
bµv(x)b]δxµ (6.12)

= : v(x+ δx)a − (Dµv(x))aδxµ . (6.13)

with implied summation over b = 0, . . . , 4 and 5-
dimensional metric (+ − − − −).

Since uα is a four-vector, we have uαη
αβuβ = 1, and u

can be identified with the five-vector (uα, 1). Due to (6.1)
it follows that

(T (C)u(τ))α = u(τ + δτ)α(1 +
1
l
δτ) . (6.14)

Since (1 + 1
l δτ) > 0 we get

T (C)[u(τ)] = [u(τ + δτ)] . (6.15)

As a result, the equation of motion takes the following form
in terms of the de Sitter covariant derivative:

D

dτ
[u(τ)] = 0 . (6.16)

For a representative of the equivalence class, the equation
of motion is (

DT

dτ
u(τ)

)a

= u(τ)a . (6.17)

Obviously, (6.17) is de Sitter covariant. Recall that the
energy-momentum tensor of a classical point particle is
determined by its four-velocity

Tαβ(x) = m

∫
dτ (−g(x))−1/2δ4(x− C(τ))uα(τ)uβ(τ) .

(6.18)
Thus, also the de Sitter parallel transport of Tαβ is defined..
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7 Summary and Outlook

In this paper we have introduced a framework which is more
general than conventional gauge theories. Following the
strategy of lessening what is assumed a priori, we proposed
to admit parallel transporters which violate the unitarity
condition. In particular we proposed to abandon the a priori
assumption of metricity in general relativity.

We have shown that a ∗-operation on PTs can be em-
ployed as a substitute, and this ∗-operation turned out to be
unique, if the holonomy group is a de Sitter group. Starting
from a single de Sitter gauge field Bµ(x), the ∗-operation
determines a split of Bµ(x) into a metric connection and
a vierbein which gives the metric.

An action principle has been formulated and variation
with respect to Bµ(x) yields both the Einstein field equa-
tions and the condition of vanishing torsion.

Let us outline some directions for future applications
and developments. In the spirit of this paper it is natural
to require that the ∗-operation is not fixed a priori but
is itself a dynamical variable that obeys local equations
of motion.

Some such proposals were discussed by Smolin and
Starodubtsev [8]. One may also wish to consider group-
or involutive-automorphism-valued fields Θ(x).

In Sect. 4 we pointed out that it may be interesting to
study degenerate vierbein fields, i.e.

E(x)[TxM] = Wx , px = Wx ⊕W⊥
x . (7.1)

Degenerate vierbein fields may provide a way to unify grav-
ity and the other interactions in a way which is different
from the Kaluza-Klein approach with a nondegenerate met-
ric in the higher dimensional space. More precisely, in this
case the unitary vector potential splits into(

Ãµ(x) Ẽµ(x)
Ẽ

∗
µ(x) Φµ(x)

)
,

with Ãµ(x) ∈ LieG̃ where G̃ is the subgroup of G which
leaves Wx invariant. Under G̃ Ãµ(x) transforms like a vec-
tor potential, wheras Ẽµ(x) transforms homogeneously and
Φµ(x) behaves like a scalar. Ãµ(x) can be regarded as the
spin connection of gravity which defines parallel transport
of vectors in Wx.

Assume that G̃ ⊗ K ⊂ G, where K is a compact Lie
group. Then Φµ(x) may be interpreted as a gauge field
associated with the inner gauge group K and Ẽµ(x) as a
sort of Higgs field.

Let us emphasize that general relativity on a differ-
entiable manifold does not push Einstein’s principle to a
logical conclusion. While it is basic for general relativity
to eliminate the a priori notion of a straight line, the a
priori given differential structure of the manifold amounts
to specifying what is a straight line in the infintesimally
small. This motivates to study generalized gauge theo-
ries on discrete manifolds which are graphs. Dimakis and
Müller-Hoissen [16–18] have shown that a differential cal-
culus and geometry can be formulated on graphs without

further a priori structure wich would substitute for a dif-
ferentiable structure. There exists a vector potential but
it is no longer in the Lie algebra of a gauge group. As a
result, there is no natural possibility to demand unitarity
of parallel transporters. This provides another motivation
for abandoning unitarity of parallel transporters.

In the discrete context the question of the global ex-
istence of a polar decomposition generalizing theorem 2
also arises. Such polar decompositions exist for a general
class of Lie-semigroupswith involutive anti-automorphisms
g �→ g∗ [19], but are not known for groups if G is not com-
pact. This suggests that also the assumption of invertibility
of PTs is not totally natural on discrete manifolds. This
may have physical consequences, see the discussion at the
end of Sect. 2.1.

Finally we mention that Higgs fields can appear as
parts of generalized PTs in extra dimensions in a novel
way such that exponential mass hierarchies appear when
the local gauge symmetry is spontaneusly broken by a Higgs
mechanism. More about discrete theories and Higgs fields
can be found in [2].
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port through the
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8 Appendix

Here we would like to show that (5.3) turns into the stan-
dard action for gravity with a cosmological constant (5.7).

The field strength associated to the spin connection is

F U
µν =

1
8
Rαβ

µν [γα,γβ ] . (8.1)

The Riemann-Christoffel curvature tensor corresponding
to the spin connection can be constructed in the follow-
ing way

Rρσ
µν = eρ

αe
σ

βR
αβ

µν . (8.2)

The Ricci-tensor is defined by

Rσ
ν = Rρσ

ρν . (8.3)

With (8.1) and E = 1
2l e

α
µγαdx

µ the action (5.3) results
in (neglecting the topological term)

− 1
4g2l2

∫
eα

µe
β

νR
γδ

ρσεαβγδε
µνρσd4x+

− 1
4g2l4

∫
eα

µe
β

νe
γ

ρe
δ

σεαβγδε
µνρσd4x, (8.4)

where we utilized

dxµ ∧ dxν ∧ dxρ ∧ dxσ = εµνρσd4x (8.5)
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and
tr(γαγβγγγδγ5) = 4iεαβγδ . (8.6)

Employing

det e = − 1
4!
eα

µe
β

νe
γ

ρe
δ

σεαβγδε
µνρσ (8.7)

we finally arrive at

S = − 1
g2

∫
tr(F ∧ FΘ) =

1
g2l2

∫
d4xdet e(R+

6
l2

) .

(8.8)
If we make the identification (5.8), we obtain (5.7).
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